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1Institute of Fluid Mechanics and Aerodynamics, Technische Universität Darmstadt,
Petersenstrasse 30, D-64287 Darmstadt, Germany

2Institute of Fluid Mechanics, Friedrich-Alexander University of Erlangen-Nuremberg,
Cauerstrasse 4, D-91058 Erlangen, Germany

3Center of Smart Interfaces, Technische Universität Darmstadt,
Petersenstrasse 32, D-64287 Darmstadt, Germany

(Received 9 December 2009; revised 9 April 2010; accepted 21 April 2010;

first published online 1 July 2010)

A novel formulation of the wall boundary conditions relying on the asymptotic
behaviour of the Taylor microscale λ and its relationship to the homogeneous part
of the viscous dissipation rate of the kinetic energy of turbulence εh = 5νq2/λ2,
applicable to near-wall turbulence, is examined. The linear dependence of λ on the
wall distance in close proximity to the solid surface enables the wall-closest grid node
to be positioned immediately below the edge of the viscous sublayer, leading to a
substantial coarsening of the grid resolution. This approach provides bridging of a
major portion of the viscous sublayer, higher grid flexibility and weaker sensitivity
against the grid non-uniformities in the near-wall region. The performance of the
proposed formulation was checked against available direct numerical simulation
databases of complex wall-bounded flows featured by swirl and separation.
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1. Introduction
One of the most important achievements in turbulence research is certainly

the ‘law of the wall’, implying that the wall-parallel mean velocity field follows
a simple logarithmic distribution: U+ = ln(Ey+)/κ (with U+ = U/Uτ , y+ = Uτy/ν),
where Uτ =

√
τw/ρ and τw = µ(∂U/∂y)y=0 are the friction velocity and the wall shear

stress, respectively. For fully developed zero-pressure-gradient boundary-layer flows,
the most widely used values for the coefficients are κ ≈ 0.41 and E ≈ 7.768–8.432
(Bradshaw 1978).

The law of the wall and two associated features, equality of the production
rate of the kinetic energy of turbulence and its dissipation rate (known as ‘local
equilibrium’) Pk � ε, and the uniformity of the turbulent shear stress, ρuv, which is
nearly equal to the wall shear stress τw (across ‘constant stress layer’ uv/U 2

τ � 1),
constitute the rationale of the widely used ‘high-Reynolds-number wall functions’,
which were originally proposed by Launder & Spalding (1974). The wall functions,
used in conjunction with turbulence models at high Reynolds numbers, can be applied
provided that the wall-closest computational node is situated in the equilibrium region
(say y+ � 30). In such a way, the viscosity-affected immediate wall vicinity is entirely
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bridged and therefore the details of the mean flow and turbulence fields in the wall-
adjacent flow region are completely missed. The use of the wall function concept
is justified only in equilibrium flows whose features comply with the assumptions
mentioned above. The validity of this concept in non-equilibrium flows is therefore
considered to be inappropriate, particularly in separating flows, around reattachment,
in the presence of strong pressure gradients or rotation. Correct capture of these
phenomena can be achieved only by integration of the modelled equations up to the
wall using the exact boundary conditions. However, this approach requires very fine
near-wall resolution of the order of y+ � 0.5–1.0, which is very demanding to fulfil
in the entire flow domain of complex three-dimensional flows at higher Reynolds
numbers, as e.g. in car or aircraft configurations. For the computations of such flows,
this means in practice an increase in grid resolution by at least a factor of 2 or even
more compared with corresponding calculations based on the application of wall
functions. The necessity for a fine grid in the immediate wall vicinity arises from the
fact that the structure of the turbulent transport equations is extremely complex in
the viscous sublayer region where the turbulence quantities exhibit steeper gradients
which must be appropriately resolved by the numerical grid. The grid refinement
in the normal-to-wall direction causes extremely elongated near-wall grid cells with
higher aspect ratio leading to slower convergence of numerical procedures.

Apart from the demanding requirement for high grid resolution, an even more
complicated situation is related to coupling between the transport equations for the
turbulent dissipation rate and the turbulent stresses when turbulence approaches the
two-component state near the wall, εij → ν∂2uiuj/∂xk∂xk as y → 0. This coupling,
which cannot be avoided by any simple (and naive) transformation, as a rule causes
numerical instabilities or very poor convergence in computations of flows involving
complex geometries. In addition to this difficulty, which prevents the formulation
of numerically robust boundary conditions at the wall, the extreme sensitivity of
the decay term −ψ k2/ε of the model equation for the turbulent dissipation rate to
huge variations in anisotropy in the viscous sublayer, where turbulence can sweep
between the two-component isotropic state to the one-component state, prevents
reliable predictions of the dissipation rate at the wall where it reaches the maximum
value from its own transport equation (Jovanović 2004).

The activity on development of the more universal wall boundary conditions,
blending between the integration up to the wall and high-Reynolds-number wall
function approach, has recently experienced substantial intensification (see Esch &
Menter 2003; Popovac & Hanjalic 2007). The latter authors proposed the generalized
wall functions that include non-equilibrium effects as the upper bound. In connection
with this issue, it is worth mentioning the work of Craft et al. (2004) on the
development of the more sophisticated wall functions relying on the integration of the
parabolized form of the governing equations across the locally refined wall-adjacent
grid cell.

In the present work, we propose a solution for both the physical modelling and
numerical implementation of the wall-boundary conditions, which should permit the
advantageous use of the second-moment and related turbulence closures for prediction
of flows near solid boundaries for complex and technically relevant applications. The
wall-closest grid node is positioned close to the edge of the viscous sublayer, which
allows higher grid flexibility and weaker sensitivity against the grid non-uniformities in
the near-wall regions. The basis of the present procedure is the asymptotic behaviour
of the Taylor microscale λ in the limit when y → 0 resulting in the linear dependence
of λ on the wall distance y.
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Figure 1. Total viscous dissipation rate ε split into the homogeneous part εh and the
inhomogeneous part 0.5ν(∂2k/∂xk∂xk).

2. The asymptotic behaviour of the Taylor microscale near the wall
The detailed theoretical foundation of the Taylor microscale, λ, can be found in

classical papers by Taylor (1935) and Chou (1945) (see Jovanović 2004). The starting
point of the present analysis is the relationship between the turbulent dissipation rate
ε, kinetic energy of turbulence k (2k = uiui = q2) and the Taylor microscale, which
reads as follows:

εh = 5ν
q2

λ2
, (2.1)

for the case of homogeneous turbulence (see figure 1 and corresponding discussion).
The Taylor microscale λ represents an intermediate length scale related to the
overlapping region between the energy-containing part of the turbulence spectrum
and its dissipative complement. The asymptotic behaviour of λ near solid boundaries
follows from the series expansion of the instantaneous velocity fluctuations around
the wall ui = ai + biy + ciy

2 + · · · , where coefficients ai , bi and ci represent
functions of x, z and time t . By accounting for the non-slip boundary condition
at the wall, (u)y=0 = (v)y=0 = (w)y=0 = 0 ⇒ ai =0, and for the continuity equation,
∂u/∂x + ∂v/∂y + ∂w/∂z =0 ⇒ b2 = 0, the following expressions for the Reynolds
stress components, kinetic energy of turbulence and the turbulent dissipation rate are
obtained:

u2 = u1u1 = b1b1y
2 + 2b1c1y

3 + · · · ,

v2 = u2u2 = c2c2y
4 + · · · ,

w2 = u3u3 = b3b3y
2 + 2b3c3y

3 + · · · ,
uv = u1u2 = b1c2y

3 + · · · ,

k = 1
2
uiui = 1

2

(
u2 + v2 + w2

)

= 1
2

(
b1b1 + b3b3

)
y2 +

(
b1c1 + b3c3

)
y3 + · · · ,

ε = ν
∂ui

∂xk

∂ui

∂xk

= ν
(
b1b1 + b3b3

)
+ 4ν

(
b1c1 + b3c3

)
y + · · · .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.2)
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Using the two-point correlation technique, the turbulent dissipation rate, ε, can
be split into the homogeneous part, εh, and the inhomogeneous part as follows
(Jovanovic, Ye & Durst 1995):

ε = εh +
1

2
ν

∂2k

∂xk∂xk

. (2.3)

The graphical representation of this expression is given in figure 1, which clearly
illustrates the difference between ε and εh. The inhomogeneous part of ε is pertinent
only to the immediate wall vicinity up to y+ ≈ 20–30. Utilizing the homogeneous
dissipation rate as a scale-determining variable has a number of important advantages
compared with the total dissipation rate, which has being commonly used in most
existing turbulence models. The modelled form of the transport equation for the
homogeneous part of the dissipation rate provides a proper near-wall shape of the
dissipation rate profile without introducing any additional term and the correct
asymptotic behaviour of the stress dissipation components εij by approaching the
solid wall without the necessity for any wall geometry-related parameter (Jakirlic &
Hanjalic 2002). The asymptotic behaviour of the Taylor microscale near the wall
is closely connected to the near-wall behaviour of the homogeneous part of the
dissipation rate and is obtained from (2.3) using the series expansions (2.2) for ε

and k:

εh = 1
2
ν

(
b1b1 + b3b3

)
+ ν

(
b1c1 + b3c3

)
y + · · · (2.4)

resulting, from application of (2.1), in a linear dependence on the wall distance:

λ =
√

10y + · · · , y → 0. (2.5)

3. Validation using numerical databases
The linear variation of the Taylor microscale in terms of wall distance in the near-

wall region and associated behaviour of the viscous dissipation of the kinetic energy
of turbulence is illustrated graphically in figures 2 and 3, displaying the relationship
between λ, k and εh obtained from (2.1), (2.3) and (2.5) in different wall-bounded flows
for which a detailed database is available from direct numerical simulations (DNS)
of fully developed channel flow (Moser, Kim & Mansour 1999; Tanahashi et al.
2004; Hoyas & Jimenez 2006), flow in an axially rotating pipe (Orlandi & Ebstein
2000 as representative of the swirling flows with underlying transverse streamline
curvature effects) and flow over a backward-facing step (Le, Moin & Kim 1997
as representative of a complex flow configuration being characterized by differently
structured flow regions affected globally by an adverse pressure gradient due to cross-
section expansion: boundary-layer separation, separated shear layer impingement on
the step wall at the reattachment region followed by flow bifurcation, recirculation
zone, post-reattachment recovery region and the newly developing boundary layer).
These numerical results correspond to a wide range of Reynolds numbers Rem

(based on the bulk velocity and the full channel height Rem =Um2h/ν) and different
rotational intensities N (where N represents the ratio between the circumferential
wall velocity and the bulk velocity, N =Wwall/Um).

The λ profiles, obtained from (2.1) and (2.3) by utilizing the numerical data for ε

and q2, exhibit linear behaviour across the entire viscous sublayer and match perfectly
among each other independently of the Reynolds number, rotational intensity and
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1

 10

1  10

λ+

y+y+

y+y+

Fully developed channel flow

λ+ = 101/2y+λ+ = 101/2y+

Rem = 5600 (Reτ = 180)
Rem = 13 750 (Reτ = 395)
Rem = 22 000 (Reτ = 590)
Rem = 31 000 (Reτ = 800)
Rem = 86 720 (Reτ = 2000)

0

0.1

0

0.1

0

0.1

0.2

0.3

10210−1 10210−1

10210−110−1
10210−1

10−1

1  10

ε+, εh
+

Fully developed channel flow

Rem = 86 720, Reτ = 2000
Rem = 22 000, Reτ = 595
Rem = 5600, Reτ = 180

ε+

εh
+

1

 10

1  10

Axially rotating pipe flow
Rem = 4900

N = 0, Reτ = 172
N = 0.5, Reτ = 161
N = 1.0, Reτ = 160
N = 2.0, Reτ = 158
N = 5.0, Reτ = 167

0

0.1
0

0.1
0

0.1
0

0.1

0.2

0.3

0.4

1  10

Axially rotating pipe flow

N = 5.0, Reτ = 167
N = 2.0, Reτ = 162
N = 1.0, Reτ = 160

N = 0, Reτ = 172
ε+

εh
+

(a) (b)

(c) (d)

Figure 2. Near-wall behaviour of Taylor microscale λ+ (a, b) and the dissipation rate profiles
ε+ and ε+

h (c, d ) in a fully developed plane channel flow in a range of Reynolds numbers (a,
c) and in an axially rotating pipe flow for different rotational intensities N (b, d ). Symbols
represent DNS results of the channel flow from Moser, Kim & Mansour (1999) (Reτ =180,
395 and 590), Tanahashi et al. (2004) (Reτ = 800) and Hoyas & Jimenez (2006) (Reτ = 2000)
and of the rotating pipe flow from Orlandi & Ebstein (2000). Here ε+ is plotted with filled
symbols and ε+

h with empty symbols. The data are normalized with the inner variables as

λ+ = Uτλ/ν and ε+ = εν/U 4
τ .

the flow region in the backward-facing step flow. There is a high level of agreement
to a wall distance in the range y+ ≈ 3 for the channel flow in the entire investigated
Reynolds number range. A similar situation is observed in an axially rotating pipe
flow if the rotational intensity range corresponds to N � 1.0. A certain deviation with
increasing rotation (N � 2.0) is obvious, but it is not of decisive importance with
respect to practical usage of λ. Very good agreement in the near-wall layer pertinent
to all characteristic regions of a separated flow, including the recirculation zone,
reattachment and recovery regions, is obtained in the flow over a backward-facing
step, as can be concluded from figure 3(a). We may also add in passing that the
range of validity of the wall boundary conditions arising from this analysis can be
somewhat expanded from the point of view of their practical application, as can be
seen in the computations using the complete turbulence model, shown in figures 6
and 7. Figure 2(c, d ) and figure 3(b) emphasize the difference between ε and εh, which
is noticeable only in the near-wall region. The εh profiles are obtained from (2.1),
with λ following from expression (2.5), and ε profiles from (2.3) using the results for
k from numerical databases as input variable. The dissipation profiles obtained in
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Figure 4. The wall-adjacent grid cell.

such a way match correctly their DNS wall values. Moreover, very good agreement
is noticeable up to the wall distance being in the range y+ ≈ 3–5.

The above discussion suggests that wall boundary conditions to be used in the
framework of near-wall turbulence models can be conveniently realized with the
following procedure:

(a) The wall-closest numerical node has to be situated in the viscous sublayer where
the linear velocity law U+ = y+ holds. It is important to note that in equilibrium flows
the edge of the viscous sublayer is located at y+ ≈ 5 but it deviates from this value in
non-equilibrium flows.

(b) The Taylor microscale λ is evaluated at the wall-adjacent node P (as shown in
figure 4) from

λP =
√

10(y)P . (3.1)

(c) The homogeneous part of the turbulent dissipation rate is computed as follows:

(εh)P = 10νkP /λ2
P . (3.2)

(d) The boundary conditions at the wall for the kinetic energy of turbulence k and
individual stress components uiuj follow from zero values of their gradients at y = 0,
which can be concluded from (2.2):

∂k

∂y
,
∂u2

∂y
,
∂v2

∂y
,
∂w2

∂y
,
∂uv

∂y
and also

∂uw

∂y
,
∂vw

∂y
. (3.3)
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Figure 5. Production rate (Pk = −uiuj ∂Ui/∂xj ) and homogeneous (εh) and inhomogeneous
(0.5Dν

k ) dissipation rates in the budget of the transport equation of kinetic energy of turbulence
k in the fully developed channel flow at Reτ = 395 and Reτ = 800. ‘JHh RSM’ denotes the
Reynolds stress model based on the homogeneous dissipation concept by Jakirlic & Hanjalic
(2002).

As the node P is still fairly close to the wall, where the series expansions (2.2) hold,
integration of the equations governing the Reynolds stress components using (3.3) is
equivalent to Dirichlet boundary conditions by setting zero wall values for the stresses
at the node s (as shown in figure 4).

Similarly to the ‘high-Reynolds-number wall functions’ comprising of a set of
constraints for the turbulence quantities at the beginning of the equilibrium region, the
above formulations can therefore be termed the ‘low-Reynolds-number wall functions’.

4. Numerical predictions of simple and complex wall-bounded flows
The feasibility of the proposed wall boundary conditions (3.1), (3.2) and (3.3)

is demonstrated by computing fully developed channel flow at the bulk Reynolds
numbers Rem = 13 750 and Rem = 31 000 (corresponding to Reτ =395 and Reτ = 800,
studied numerically by Moser, Kim & Mansour 1999 and Tanahashi et al. 2004,
respectively) and a backward-facing step flow at the step-height Reynolds number
ReH = 5100 (investigated by Jovic & Driver 1995; Le, Moin & Kim 1997) in
conjunction with the near-wall second moment closure proposal by Jakirlic &
Hanjalic (2002) based on the homogeneous dissipation concept (denoted by JHh in
figures 5 and 7). Accordingly, the transport equation for the Reynolds stress tensor is
solved in conjunction with the scale-supplying equation governing the homogeneous
dissipation rate εh. As the inhomogeneous part of the total turbulent dissipation
rate corresponds exactly to half of the molecular diffusion of the kinetic energy of
turbulence, Dν

k = ν∂2k/(∂xk∂xk) (see (2.3) and associated discussion), it does not have
to be modelled. Hence, the total turbulent dissipation rate does not appear in the
final model formulation and should not be considered further. Figure 5 illustrates the
comparison of the DNS results and computed terms in the budget of the equation
of the kinetic energy of turbulence: production rate Pk and both homogeneous (εh)
and inhomogeneous (Dν

k/2) dissipation rates in the plane channel flow at two above-
mentioned Reynolds numbers. Interested readers are referred to the work of Jakirlic
and Hanjalic (2002) for the complete specification of the differential Reynolds stress
model employed. It should be pointed out that this model was selected just in order
to illustrate the performances of the presently formulated wall boundary conditions in
the framework of the computations using the complete set of equations for all stress
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Figure 6. Numerical predictions resulting from application of wall boundary conditions (3.1),
(3.2) and (3.3) to a fully developed channel flow: normal stress components (a, c) and shear
stress (b, d ). DNS results are from Moser, Kim & Mansour (1999) (Reτ = 395, Rem = 13 750)
and Tanahashi et al. (2004) (Reτ = 800, Rem =31 000). Here the (y+)P values correspond to
the wall-adjacent node and NY denotes the number of grid points in the y direction over the
channel half-width h.

components. The main objective is to show that the predicted results away from the
viscous sublayer, independently of the position of the wall-adjacent computational
node, coincide with those obtained by setting y+

P < 1. It should furthermore be
emphasized that the present wall boundary conditions can be used in conjunction
with any scale-supplying variable, i.e. scale-supplying equation – governing either the
total turbulent dissipation rate or its homogeneous part; it could also be extended to
any quantity of the general form εmkn (e.g. m =1, n= −1 ⇒ ε/k = ω – inverse time
scale). Accordingly, they are independent of the turbulence model applied. Both the
eddy-viscosity model group and Reynolds stress models can be considered.

Selected results shown in figures 6 and 7 depict the behaviour of all important
quantities representing typically the results of flow predictions: mean velocities, all
four turbulent stress components and the skin-friction coefficient Cf , representing
the integral flow characteristic of great practical importance, under the conditions
of grid coarsening with respect to the wall-closest grid node. Their behaviour is
analogous in other wall-bounded flow configurations. The solid lines represent the
results obtained by applying the conventional near-wall boundary conditions, which
requires very small values for (y+)P for the wall-adjacent grid node. The results
obtained on coarser grids for which the proposed wall boundary conditions were
applied follow closely the results obtained on the finest grid in the remaining part
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Figure 7. Numerical predictions of a backward-facing step flow obtained by application of

proposed wall boundary conditions: mean velocity and Reynolds stress component (v′ =
√

v2

and uv) profiles in the recovery region and skin friction coefficient. Symbols correspond to the
DNS results of Le et al. (1997). JHh RSM denotes the Reynolds stress model based on the
homogeneous dissipation concept by Jakirlic & Hanjalic (2002).

of the cross-section. The (y+)P = 4.77 value of the wall-closest grid point implies the
application of these boundary conditions at the viscous sublayer edge in the plane
channel flow. A similar degree of agreement is obtained by applying the proposed
wall boundary conditions in the flow over a backward-facing step shown in figure 7.
The coarsest grid used corresponds to (y+)P =3.30–3.54 at the streamwise locations
x/H =10, 15 and 19 in the post-reattachment region. The predicted results exhibit
a certain departure from those obtained on finer grids, this being especially visible
when analyzing the friction factor development. However, this deviation is caused
solely by the wall-closest grid point lying outside the U+ = y+ validity range, whose
upper bound corresponds to y+ ≈ 2.5 for the streamwise locations considered in the
recovery region.

5. Conclusion
The exact linear behaviour of the Taylor microscale in the immediate wall vicinity,

corresponding to λ=
√

10y + · · ·, representing a unique property of differently featured
wall-bounded flow configurations, and the related exact relationship to the homogen-
eous part of the turbulent dissipation rate εh =10νk/λ2 represent the basis for formu-
lation of the unified wall boundary conditions pertinent to the low-Reynolds-number
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turbulence models. Their application permits significant coarsening of the near-wall
grid resolution (leading also to a more convenient cell aspect ratio), enabling the
wall-adjacent computational node to be located at the edge of the viscous sublayer.
The most important benefit of their use is a weaker grid sensitivity to the grid size
in complex wall-bounded configurations with flow passing differently characterized
regions, e.g. transition from attached to separated flow regions or the opposite.
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